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ABSTRACT 

This report compares the performance of two algorithms in correlating observa- 
tions from multiple sensors. This correlation problem can be treated as an assignment 
problem in operations research, with assignment costs being equal to the sufficient statistic 
of the generalized likelihood ratio test. In sensor-to-sensor correlation, the main concern 
is a one-to-one solution in which targets from one sensor are matched in an optimal 
manner with targets from the other sensor. This corresponds to a classical assignment 
problem that is often solved using Munkres' algorithm. In target object mapping, concern 
shifts to correctly associating a subset of high-value targets between sensors. We hypoth- 
esize that this goal could be better attained by allowing for a many-to-one solution and 
propose the use of a modified auction algorithm to solve this generalized assignment 
problem. Results of Monte Carlo simulations of such situations are analyzed to compare 
the performance of the two solution methods. 
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1.  INTRODUCTION 

Several specific problems arise in target tracking applications. One problem is the case in which 
multiple sensors simultaneously track a number of targets, often referred to as multiple target tracking. 
Though multiple target tracking has other problem areas, we will specifically discuss the correlation of 
measurements from several sensors associated with the same target 

The usual assumption in sensor-to-sensor correlation problems is that the locations of the targets are 
uncorrelated. In other words, it is assumed that there is a unique one-to-one association between targets 
observed by both sensors, and the payoff for correctly assigning, or correlating, each target is the same. In 
many practical tracking problems these assumptions do not hold. For example, when real sensor resolution 
effects are considered, two objects that are tracked as separate targets by one sensor may be unresolved and 
correspond to a single track file in the other sensor. In this case, the assumption of a one-to-one correspon- 
dence between tracks is violated. Another example occurs when tracking targets in clutter or debris. Here 
the payoff for correlating high-value targets such as missiles or aircraft is much greater than for correctly 
correlating extraneous debris tracks. 

A set of sensor tracks and associated target identifications is known as a target object mapping. Target 
object mapping is a special case of the sensor-to-sensor correlation problem in which a selected subset of 
high-value targets is correlated between sensors. It is often more important to associate the high-value target 
observed by sensor 1 with the high-value target observed by sensor 2, even if additional targets observed by 
sensor two are associated with that sensor-one target The focus of this paper will be to consider new 
algorithms that efficiently solve some target object mapping problems and compare the new algorithms to 
more conventional algorithms for sensor-to-sensor correlation. 

For the case of unique one-to-one target association, it has been shown that the sensor-to-sensor 
correlation problem is the same as the classical assignment problem in operations research [1-3]. The costs 
(or performance ratings) used for association can be shown to be the sufficient statistic of the multiple 
hypothesis generalized likelihood ratio test [1]. Under the correct hypothesis for Gaussian uncertainty 
models, the sufficient statistic follows the chi-square distribution. The classical assignment problem has 
customarily been solved using Munkres' algorithm [3], although more efficient algorithms have been 
proposed to reduce computation times for problems of large dimension [4]. 

In this work, target object mapping is treated as a generalized assignment problem in which multiple 
assignments are allowed. The targets are assigned to minimize the total weighted distance between tracks 
of the two sensors. The distance measure is based on a Gaussian uncertainty model. The auction algorithm 
as developed by Bertsekas [5] will be used to solve the generalized assignment problem. 

In Section 2, we derive a correlation cost model from a generalized likelihood ratio test as in [1]. In 
Section 3, we define the classical and generalized assignment problems. In Section 4, we introduce our 
solution methods, Munkres' algorithm and the auction algorithm. In Section 5, we formulate a target object 
mapping problem and develop a basis for simulation. Finally, in Section 6, we use Monte Carlo simulation 
to evaluate six performance measures. 



2.  CORRELATION COST MODEL 

The correlation costs are derived from a generalized likelihood ratio test, following a similar 
derivation given in [1]. 

Let xt be the i measurement from sensor 1, and y• be the / measurement from sensor 2, where 
the two sensors take measurements on the same N targets. Assume that there are m measurements from 
sensor 1 and n measurements from sensor 2. Assume for now that m = n, so that each sensor provides 
measurements on the same m = n = N targets. The more general problem in which target sets observed 
by each sensor are not identical is shown as an example of a sensor-to-sensor correlation problem in Figure 1 
and will be discussed shortly. 
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Figure 1. A sample sensor-to-sensor correlation problem. 

It can be assumed that all x,- and y • are referred to the same Cartesian coordinate system, even though 
sensors 1 and 2 are not required to be identical. If the measurements are not of the same coordinate system, 
a required transformation can be defined to satisfy the above assumption. Let the covariance of the 
measurement noise for sensors 1 and 2 be represented by P^ and £ -. , respectively. This can be thought of 
as the uncertainty of measurement i from sensor 1 and j from sensor 2. 



Let Hk denote the hypothesis that the same target, k, has generated measurements. Note that there 
are a total of N possible hypotheses. Let z represent the true measurement vector corresponding to Hk. 
Then the generalized likelihood ratio test requires the following decision function [6]: 

d{xik,yh) = p{xik,yh\z)   . (1) 

This decision function is obtained using the maximum likelihood estimate of z; that is, the z satisfying 

max 
z 

(P(xik,yjk\z))   . (2) 

The decision function is then found by substituting z into Equation 1. Equations 1 and 2 form the sufficient 
statistic for correlation measurements from multiple sensors. 

Assume that measurement noise is independent between sensors and follows a Gaussian density 
function with zero mean. Further assume the covariance for sensor 1 is identically equal to P for all 
observations i and the covariance for sensor 2 is identically equal to L for all observations j. Then the 
decision function from Equation 1 becomes 

~l[(x,rifp-l(xlit-i)*iyjt-tfr
l(yjrt)] 

d(xik,yjk) = ce , (3) 

where 

z = (/>-1 + rVV \ + Z_1vA)   . (4) 

The z in Equation 4 is the maximum likelihood estimate of z assuming that all xi, y •. are uncorrelated. 

Referring to Equation 4 for z, the decision function in Equation 3 can be simplified as follows. First 
note that 

xik-z = (Z/'-1 + /)"1(x.t-yA) . (5) 

This follows from direct substitution. From this, one can see the following: 

(xit -'z)TP~\xik - z) = (xik - yJk)
TCL + PflP(Z + P)~\xik - yrf . (6) 

Similarly, one can arrive at 

(yJk-z)Tir1(yJk-z) = (xik-yJk)
T(P + Z.)-1Z(P + Z)-\xik-yJk)   . (7) 



Finally, substituting Equations 6 and 7 into the decision function in Equation 3, one obtains 

4fo-vT(/,+irVv] 
d(xik,yh) = ce . (8) 

All decision information is contained in the exponent of d(xi, y • ). Thus the exponent of this decision 
function is the sufficient statistic for the generalized likelihood ratio test: 

hi = (*«• - y/(p+s>-1 (*t - yj) • (9) 

This value can be interpreted as a weighted distance measure between observations x,- and yy. If 
observations x(- and y; do result from the same target, then J« follows a chi-square distribution, with 
degrees of freedom equal to the observation vector size [7]. If xi and yy do not result from the same target, 
(x, - yj) is not zero mean. In this case, l- has a higher probability of achieving values significantly larger 
than that of a chi-square random variable. This statistical realization allows the use of chi-square statistics 
in selecting a threshold to prescreen li} 's. We will see that this can be used in a preliminary manner to 
effectively eliminate lv 's mat indicate that x-t and y • should not be associated. 

To restate the problem, suppose one would like to decide which xt should be correlated with a 
particular y •. In other words, for a particular observation from sensor 2, which observation from sensor 1 
is most likely to have originated from the same target? For a fixed j, this generalized multiple hypothesis 
testing procedure will select that x- that satisfies 

mm       lu  for a given;   . (10) 
(i=l,...,A0 ,J 

This value of xi is the best match to target j independent of all other target matches. In the next 
section we will consider two assignment problems that correspond to a global match of targets that minimiz- 
es the sum of / • • over all indices i and j. 



3. ASSIGNMENT PROBLEMS 

A commonly used example of an assignment problem is the instance in which one has m people and 
n jobs, where m does not necessarily equal n. There is a certain cost (or benefit), c • •, of assigning person 
i to job j. Which persons should be assigned to which jobs to ensure that the total assignment cost is min- 
imal (or that benefits are maximal)? Two possible solutions to this problem are a one-to-one assignment, in 
which each person is assigned to work on exactly one job, and a many-to-one assignment, in which each 
person may work on more than one job. 

Consider the assignment problem cost matrix shown in Table 1. 

TABLE 1 
Assignment Problem Cost Matrix 

Sensor 1 Observations vs. x\ x2       • nt 

Sensor 2 Observations 

y\ hx l2l       . ••   Li 

y* hi In    • ••      'm2 

y„ hn hn       • mn 

Recall that l^ is the sufficient statistic associated with correlating observation i from sensor 1 with obser- 
vation j from sensor 2, as derived in Equation 9. We can treat / • • as the cost, c • , of associating xi and y •. 

3.1    CLASSICAL ASSIGNMENT PROBLEM 

In the classical assignment problem, /-; would represent the cost (or benefit) of assigning person i to 
work on the / job. The optimum assignment is that which can minimize the total assignment costs, subject 
to the constraint that each person be assigned to exactly one job: 

nun 

w tj 
N 

•.tJ/y-W-L-JV 
«=1 

N 

7=1 

(ID 



where fy are binary variables that indicate whether person i is assigned to job ;'. The problem denned in 
Equation 11 assumes that there are an equal number of jobs and people, i.e., m = n = N, and yields a 
one-to-one assignment 

An obvious but unwieldy way of treating this problem is to enumerate all possible assignment sets 
and then select the one that yields the minimum sum. This approach requires N\ trials. A well-known 
method, the Hungarian algorithm, requires substantially fewer operations to reach an optimal solution. An 
implementation of the Hungarian algorithm was developed by Munkres [3], which requires 0{N) 

operations. For large N, this represents a significant savings. 

The case that m * n is the generalized assignment problem. To a certain degree, this can still be con- 
sidered and treated as a classical assignment problem. Without loss of generality, consider the case in which 
m < n, i.e., there are more jobs than people. The objective function in Equation 11 remains the same, but the 
constraint set is slightly modified to require that each person may only be assigned once, so that there is still 
a one-to-one assignment Thus there will be (n - m) jobs that will remain unassigned. 

Munkres' algorithm can be modified slightly to solve this more general assignment problem. It 
provides an optimal solution, assuming the above constraints, and requires 0(m ) operations. This has 
already been implemented [8], and the details will not be included in this report Currently, Munkres' 
algorithm is the method that is most often used to solve sensor-to-sensor correlation problems [9]. 

32    MULTIASSIGNMENT PROBLEM 

An alternative way of considering the generalized assignment problem, in which there are an unequal 
number of people and jobs, is the multiassignment problem. The objective function remains the same, and 
each job will only be assigned to one persoa However, each job will be assigned to some person, so each 
person may have more than one job assignment (each job must be done): 

min V"; r 

(U)hiiij 

m 

s.t-X/;y=i;Vy=i,...,n 
i= 1 

n 

£/,-,= l;Vi=l,...,m   . (12) 

This version of the problem yields a many-to-one assignment A good solution to this problem, known as 
the auction algorithm, is found in [5]. 

The auction algorithm can be used to solve all three versions of the assignment problem using the 
same techniques, as long as m and n are specified. The user may extract either a one-to-one solution or a 
many-to-one solution. If the association costs are integral, the solution provided by auction is optimal. The 
auction algorithm also solves a large problem with significantly smaller computational complexity, 



O(nmiogm). The problems discussed in this paper are small enough that computation time is negligible, 
although some computation time comparisons for large-scale problems can be found in [10] and [11]. 



4.  SOLUTION METHODS 

4.1    MUNKRES'ALGORITHM 

The Munkres* algorithm itself will not be discussed in detail in this report. An existing FORTRAN 
implementation that had been modified to solve the classical assignment problem for m < n was used [8]. 
One need only provide m and n, the number of observations for each sensor, and the calculated correlation 
costs. Figure 2 is given here as the most basic representation of Munkres' algorithm. 

A = Assignment Problem 
Cost Matrix, as in Table 1 

Mark any 0 entries as 0* 
and cover 0* columns 

Mark uncovered 
0 entries as 0' 

NO 

Star 0' and 
cover column 

Erase all' marks 
Uncover all rows 
Cover 0* columns 

Find the minimum uncovered element, h 
Add h to each covered row 

Subtract h from each uncovered column 

YES 
Cover the row and 

uncovered 0* columns 

NO 

Unstar 0*, Star 0', 
Cover new 0* columns YES 

STOP 

Move to the row of 
old 0*, look for 0' 

Figure 2. Flowchart for Munkres' algorithm. 

42    AUCTION ALGORITHM 

As the name implies, the auction algorithm can be described in terms of an auction. Most of the 
intuition provided in the following section is taken from [5]. It is repeated here with minor alterations in 
notation and terminology to facilitate better understanding of the initialization values and modifications 
specific to this application. 

11 



A common terminology must be denned. The problem defined in Equation 12 can be restated as a min- 
imum cost flow problem: 

nun 

hj   i,j 

m 

»" = 1 

m 

m 

(13) 

where f{- and /„• are binary variables indicating flow of 1 or 0, depending on whether person node i is 
correlated with job node j. A source node s has been added to the network. This source node is connected 
to each person node i by an arc (s, i) of zero cost and feasible flow range [0, n - m] (see Figure 3). 

Figure 3. Assignment problem network. 
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Define a price vector p-, which is the dual variable associated with the j constraint of the first set 
of constraints in Equation 13. This can be thought of as the price that must be paid for job j. Similarly, 
define a profit vector rc,, which is the dual variable associated with the ih constraint of the second set of 
constraints in Equation 13. This represents the profit that person i will receive for any job. Denote the dual 
variable associated with the last constraint in Equation 13 as X, the maximal initial person profit 

For the sake of computational convergence, define a constraint e, which represents the minimum bid 
increase. This ensures that bidding will always increase the price of a job. This bid increase must be large 
enough to provide fast, finite convergence, and small enough to guarantee optimality. It has been proven 
that for integer costs e < \/m is sufficient to guarantee optimality [5,10]. For the purposes of this paper 
however, real costs were used. In this case, it is necessary to scale the real costs in such a way that they are 
equivalently integral. This is equivalent to scaling merely the minimum bid increase, which requires less 
computation. In this manner, e < 0.0001 /m was found to be sufficient to guarantee optimality for the real 
costs used in this application. 

Assignment using the auction algorithm requires two steps. The first step is the forward auction, 
where each job is assigned to exactly one person. The forward auction will provide the same one-to-one 
solution provided by Munkres* algorithm. The second step is the reverse auction, where the remaining 
n-m unassigned jobs will be appropriately assigned, so that each person may have more than one job to 
do. Each of the forward and reverse auction steps is comprised of a bidding phase followed by an assign- 
ment phase. 

Before the auction algorithm can commence, a brief initialization is required. The initial values 
described are those that are used in this particular application. Other initial values can be used, with feasible 
ranges described in [10]. At any stage of the auction, there will be an assignment set S, indicating which 
person has been assigned to which job. The initial assignment set is trivially chosen as the empty 
assignment. The price vector p is initially set to 0 for all jobs. Using the formulation of the dual problem, 
the initial profit vector can then be set to 

*,=   ""W«>   • (14) 
;' 

Finally, using the definition of the maximal initial person profit, X is initialized as 

X =   "fie,.   . (15) 

The forward auction is fairly straightforward. In the bidding phase, unassigned persons i will submit 
"bids" for their "favorite" job ji, as follows. The favorite job ji of person j is that which offers maximum 
value: 

;,.-arg     max     {-/,-/>.}    . (16) 
7 = 1 n 
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That maximum value, obviously, is 

v. =      "**     {-lij-pj}     . (17) 
j=l,...,n 

The best value offered by any job other than ji is 

Wl = max (-/.,-tf/J     . (18) 
1 /..„»./,>,{-'«-"P • 

If there is no other job left to assign, w, is set to -10000 to simulate negative infinity. Finally, the bid 
person i will submit for job ;',- is calculated by: 

hU,m Pjt 
+ vi-wi + t 

= -hj-wi + e   • d9) 

The assignment phase for the forward auction considers each job j that received a bid during the most 
recent bidding phase. The set of people who submitted bids for job j is represented by P(J). At this point, 
the price of job j is increased to the highest bid it received, as calculated in Equation 19: 

Pj=     "^    b.-   . (20) 

If j were previously assigned to some i" , then f becomes unassigned, and j is now assigned to the person 
i • who submitted the winning bid. This forward auction is continued until all persons i are assigned to 
some job ji. 

If there were a tie for person i, the best value offered by any job other than ;'•, wi would be the same 
as v-, which would mean the bid in Equation 19 would become 

biJt~Pj+*   • (2D 

and thus the bid is increased by the minimum bid increase, e. 

The reverse auction starts with some assignment set S in which each person is assigned to a distinct 
job. In other words, the reverse auction starts with the S provided by the forward auction. It follows 
similarly to the forward auction, but it must contain a mechanism that distinguishes when a job can be added 
to a person's existing assignment as opposed to when that job displaces the existing assignment, thus 
unassigning any currently assigned jobs. 

14 



The bidding phase involves all jobs ; that are unassigned under the assignment set 5. Job j selects 
its "favorite" person, i •, as that which offers maximal value 

ij = arg     "•     {-/<,-*,} . (22) 
1=1 ,...,m 

That maximal value is represented by 

P.- {-/«-*,}   • (23) 
i= l„..,m 

The maximal value offered by persons other than i • is 

to, =   .    , max .   .  {-/„-*,}   . (24) 

As in the forward auction, if i- is the only person left to consider, <Oj is set to -10000, or negative infinity. 
The multiassignment indicator, or bid, is set as: 

8 = min{\-it:, Bf— w. + e}   . (25) 
•/  *     ' 

In the assignment phase, job j is assigned to person ij, and the price and profit vectors are updated: 

Pj - P,-5 

71;    =   70;   +8      . (26) 
y       j 

If 8 > 0 , any job / that was previously assigned to person i, is unassigned, leaving job ; as the only job 
assigned to person i •. A person ij has a job ; multiassigned if and only if 8 = 0, or equivalently, 
re, = X. In other words, if the profit received by person i, has already reached the maximal person profit, 
assigning job j cannot increase that profit Thus job j does not offer more profit to person i than the 
current job assignment, and there is no reason to unassign those jobs. 

At the end of the forward auction, an optimal one-to-one assignment is given, equivalent to the 
optimal assignment obtained by Munkres' algorithm. If a one-to-one assignment were sought, the solution 
is provided from the forward auction alone. At the end of the reverse auction, all jobs j are assigned to some 
person i, and each person i may have more than one job assignment. 

It is relevant to discuss the use of the chi-square statistic at this point If the association cost of job ; 
to all persons i • l,...,m exceeds the appropriate chi-squared statistic, then job j is labeled as assigned to 
no person during the initialization. This excludes it from being considered in multiassignment in the reverse 
auction algorithm, while being consistent with the idea of associating measurements that are most likely to 

15 



have originated from the same target. If there are (n - m + k) such jobs j that exceed the chi-squared statistic 
for all persons, k of these jobs will be assigned during the forward auction, because each person must be 
assigned some job. 

16 



5.  TARGET OBJECT MAPPING SIMULATION 

A Monte Carlo simulation of the target object mapping problem was used to compare the two 
algorithms. Two sensors simultaneously track a set of m targets. The sensors' measurement errors are 
modeled as zero mean Gaussian, with sensor l's error variance denoted by a2 and the sensor 2's error 
variance denoted by a2. 

A set of m targets is randomly drawn from a two-dimensional uniform [0,1] distribution. These m 
targets are assumed to be observed by both sensors, and the appropriate random Gaussian noise is added for 
the sensor measurement value. A set of (n - m) extraneous targets are then randomly drawn, also from a 
two-dimensional uniform [0,1] distribution, that are only observed by sensor 2. The appropriate random 
Gaussian noise is also added to these targets to provide for sensor 2's extraneous measurements. 

The association costs, /«, are calculated as in Equation 9. A chi-square threshold corresponding to a 
93% confidence level was used to screen out unlikely matches. If l» for observation j is greater than this 
value for all observations i = 1 ,...,m, observation j can be considered as one of the extraneous observations 
and automatically discarded from consideration for multiassignment in the reverse auction. 

Once the association costs are calculated, the assignment problem is solved two ways: one solution is 
obtained by Munkres' algorithm; the other is obtained using the auction algorithm. 

17 



6.  RESULTS 

Experiments of such Monte Carlo simulations were conducted using four slightly different test sets. 
Within each test set, 11 separate runs consisting of 1000 simulations each were conducted (see Figure 4). 
This was to demonstrate the difference in the results as the normalized error, a = (Oj + a2

2) , ranged 
from 0.001,0.1,..., 1.0. The case in which error is equal to 0.001 approximates the case in which error is 
equal to zero, or when the measurements are very precise. The other extreme, when error is equal to 1.0, is 
the case in which the sensors are not providing accurate readings at all. The most important comparisons 
occur when the error is between 0.2 and 0.4, because, as will be seen, this is when correlation accuracy 
drastically decreases. When the error variance for sensor 2 is much less than that for sensor 1, the error 
variance for sensor 2 is set to 0.001. 

Test Set;' 
/= 1,2,3,4 

a = 0.001 
1000 simulations 

Simulation 1 

" r 

o = 0.1 
1000 simulations 

o=1.0 
1000 simulations 

1 
Simulation 1000 

Auction 
1 

Munkres' 

Figure 4. Organization of Monte Carlo simulations. 

An initial set of experiments evaluated the performance of both algorithms for the one-to-one 
correlation problem. For such sets, m = n, and the auction algorithm terminates at the end of the forward 
auction because all persons and all jobs are assigned. These results show that both methods provided the 
same one-to-one solutions, because both solved the case optimally for the calculated correlation costs. The 
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next set of experiments considered unequal numbers of observations for the two sensors. These test sets are 
summarized in Table 2. 

TABLE 2 
Test Sets: 1000 Simulations for Each a = 0.001, o.i, 0.2.....1.0 

Test Set S1 Observations S2 Observations 
2          2          2 

o-j + a2   = a 

1 5 10 a2 «Oj 

2 5 10 a2 = a, 

3 10 5 a2«a1 

4 10 5 a2 = o-j 

The results shown below demonstrate results for test set 1, but these results can be extended to include 
the other test sets. There are m = 5 observations from sensor 1 (SI) and n = 10 observations from sensor 2 
(S2). Six performance measures were considered important for this case (see Table 3). The results of each 
are plotted versus the normalized variance error, a. 

TABLE 3 
Simulation Performance Measures 

1. Probability of perfect assignment 

2. Probability of prime target correlation 

3. Number of prime target assignments 

4. Average prime target assignment costs 

5. Average auction iterations 

6. Prime target assignment "swaps" 

The probability of perfect assignment is a sensor-to-sensor correlation measurement. This tells us 
how often each of the SI observations was assigned to the S2 observation that originated from the same 
target, for each of the five targets. In the case of the auction algorithm, a multiassignment was considered 
perfect if the correct S2 observation was among those assigned to the corresponding S1 observation for each 
of the five targets. 
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Test Set 1: S1  = 5, S2 = 10 
1000    trials 

-Auction 

-•—Munkres 

0.001     0.1       0.2       0.3       0.4       0.5       0.6       0.7       0.8 

Normalized    error    (a) 

0.9       1.0 

Figure 5. Probability of perfect assignment. 

As can be seen from Figure 5, the auction algorithm offered significant improvement over Munkres' 
algorithm in perfect assignment At covariance values of 0.2 through 0.4, there is as much as a 30% 
improvement. 

The rest of the performance measures concentrate on the more specific target object mapping 
problem. In these, we are concerned most specifically with one particular target, which is referred to as the 
prime target. For the sake of simplicity, we assume the prime target is the first target The following graphs 
depict the accuracy of the correlation of the measurements for this specific target. The probability of prime 
target correlation measures how often the SI prime target observation and the S2 prime target observation 
were correcdy assigned. For the multiassignment, it is enough that the S2 prime target observation is among 
those assigned to the SI prime target observation. 
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Test Set 1: 81 = 5, S2 = 10 
100 0   trials 

Auction 
unkres 

001 0.1 02 0.3 0.4 0.5 0.6 
Normalized    error    ( a) 

0 7 0 8 0 9 1  0 

Figure 6. Probability of prime target correlation. 

As is seen in Figure 6, the auction algorithm again offers significant improvement over Munkres' 
algorithm. At the most critical points, where covariance is between 0.2 and 0.4, it offers a 10% to 20% 
improvement in prime target correlation. 

The number of prime target assignments measures how allowing the multiassignment benefited in 
finding the correct prime target assignment. The baseline is the number of times, over 1000 simulations, 
Munkres' algorithm correctly associated the SI prime target observation and the S2 prime target observa- 
tion. This is compared to the number of times the auction algorithm provided the correct assignment as a 
one-to-one solution. It is also compared to the number of times the auction algorithm provided the correct 
assignment in a k -to-one assignment (multiassignment), where k can be 2, 3,4, 5, or 6. 
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Figure 7. Number of prime target assignments. 

Figure 7 shows that as the covariance increases, allowing the multiassignment is what gives the the auction 
algorithm such advantage in prime target correlation over Munkres' algorithm. When covariance ranges 
between 0.2 and 0.4, multiassignments allow for up to twice as many prime target assignments over unique 
assignments. 

The average assignment cost of the prime target was compared. For Munkres' algorithm, this was 
merely the correlation cost /j of the SI prime target observation, and the S2 observation ;* assigned to it. 
These values were summed over the 1000 simulations, and then the average was taken. For the auction 
algorithm, the distinct minimum and maximum SI prime target assignment costs for each of the 1000 
simulations were taken as a baseline. It is intuitively obvious that the prime target assignment costs are 
bounded below by zero and above by the chi-square threshold. Finding the average assignment cost was a 
multistep process. In each simulation, the average of the correlation costs /. for all S2 observations j 
assigned to the SI prime target observation was found. These averages were summed over the 1000 
simulations, and the overall average was then calculated. 
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Figure 8. Average prime target assignment costs. 

It can be seen from Figure 8 that the auction algorithm has a slightly larger average assignment cost for the 
prime target than Munkres' algorithm. This is most likely due to allowing several assignments, which are 
likely to have slightly larger assignment costs than the single optimum assignment 

There were several statistics that were compared to demonstrate the efficiency of the auction 
algorithm. The average number of iterations for the forward and reverse auction iterations was calculated 
simply to show that at any given time, the auction algorithm does not require a large number of iterations. 
More specifically, Figure 9 shows that, on average, there are never more than five forward auction iterations, 
and rarely more than two reverse auction iterations. 
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Figure 9. Average auction iterations. 

The number of prime target swaps displays how often the assignment for the prime target at the end 
of the forward auction is not included in the prime target assignment at the end of the reverse auction. A 
prime target swap can mean that the SI prime target and the S2 prime target were correctly assigned at the 
end of the forward auction, and then not assigned at the end of the reverse auction. It is equally likely that 
the reverse is true, i.e., that the SI prime target and the S2 prime target were not assigned at the end of the 
forward auction and then were correctly assigned at the end of the reverse auction. Figure 10 shows that 
such swaps occur, at worst, in about 10% of the simulations. 
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Figure 10. Prime target assignment "swaps. 

The performance measures become a little trickier if it is important to assign the prime target 
measurement from one sensor to only one measurement of the other sensor. This could happen, for 
example, in case three of our test sets. This would correspond to a situation in which S2 obviously has a 
larger error variance and more measurements than SI. The primary concern in this scenario is to associate 
the prime target measurement of SI to only the S2 measurement that is most likely to correspond to the 
prime target. Obviously, Munkres' algorithm forces such a one-to-one assignment, so the Munkres' 
performance measures remain the same. The performance measure of interest is the probability of prime 
target correlation. For the auction algorithm, this can be defined by considering a prime target assignment 
as correct only if the SI prime target is the only observation correlated with the S2 prime target. 

26 



Test Set 3: S1 = 10,   S2 = 5 

1000     trials 
100 0 

-FPFrRFRF 

EMunkres 

•Auction 1-1 

•2-1 

•3-1 
•4-1 

•5-1 
H6-1 

•iiiiiiiiiiintrini 
0.001    0.1      0.2      0.3      0.4      0.5      0.6      0.7      0.8      0.9      1.0 

Normalized    error    ( a) 

Figure 11. Prime target accuracy for test set 3. 

Both performance measures are represented in Figure 11. The prime target accuracy for the auction 
algorithm is represented by the bar that indicates the number of times the auction algorithm provided the 
correct prime target assignment as a one-to-one assignment. The remaining auction results are shown for 
comparison. For such a definition of prime target correlation, Munkies' algorithm outperforms the auction 
algorithms significantly, especially when the covariance is between 0.2 and 0.4. However, in this case, one 
could simply extract the one-to-one solution from the forward auction if one were not interested in 
allowing multiassignments. 

The remaining performance measures can be conducted in the same manner for all test sets, resulting 
in similar conclusions. The average prime target assignment costs showed similar patterns, being bounded 
above by the chi-square statistic and below by zero, with the average auction cost slightly greater than the 
average Munkres' cost. The average number of forward auction iterations approached six; the average 
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number of reverse auction iterations rarely exceeded two. The number of prime target assignment swaps 
was, in the worst case, never more than 12%. 
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7.  CONCLUSIONS 

This report set out to explore the use of the auction algorithm in an application of the assignment 
problem: the target object mapping problem. More specifically, a comparison of the performance of the 
auction algorithm for generalized assignment and Munkres' algorithm for one-to-one assignment was 
conducted. This was done in four test sets, the results of which were compared using various performance 
measures in an attempt to show the problem from multiple angles. 

The auction algorithm requires considerably fewer computations. The computational complexity of 
the auction algorithm is only O(nmlogm), as compared to Munkres' algorithm, which has a computational 
complexity of 0(m ). (However, in situations that are realistically considered in target object mapping, 
computational complexity is not a factor, because measurement sets are typically small enough where such 
run-times would be negligible.) The fast, finite completion of the auction algorithm was further quantified 
by showing that the average number of total auction iterations never exceeded eight iterations throughout 
the experiments. 

The auction algorithm is significantly more flexible then Munkres' algorithm. If one is concerned 
with the one-to-one assignment provided by Munkres', it is simple to extract this solution from the final 
forward auction assignment set However, if one is concerned with a target object map, the multi assignment 
allowed by the reverse auction provides significantly better prime target solutions. This was demonstrated 
through the use of two performance measures: the probability of perfect assignment in a sensor-to-sensor 
correlation experiment, and the probability of prime target correlation in target object mapping. As 
covariance increased, the variability between the Munkres' prime target solution and the auction prime 
target solution also increased, with as much as a 12% variability for final prime target assignments. 
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